Ionics
T.M.W.J. Bandara, L.B.E. Gunasekara,
S.M.S. Gunathilake, B.-E. Mellander (2022). Transport
parameters of charge carriers in PEO-LiTf-based, plasticized, composite, and
plasticized-composite electrolytes intended for Li-ion batteries. Ionics, 28: 2701–2714.
DOI: https://link.springer.com/article/10.1007/s11581-022-04540-4
Ionics
T.M.W.J., Bandara, J.M.C. Hansadi
& F. Bella (2022). A
review of textile dye-sensitized solar cells for wearable electronics. Ionics, 28: 2563–2583.
DOI: https://link.springer.com/article/10.1007/s11581-022-04582-8
Materials Chemistry and Physics
T.M.W.J.
Bandara, T.M.A.A.B. Thennakoon, G.G.D.M.G. Gamachchi, L.R.A.K. Bandara, B.M.K. Pemasiri,
& U. Dahanayake, (2022). An electrochemical
route to exfoliate vein graphite into graphene with black tea. Materials Chemistry and Physics, 289: 126450.
https://www.sciencedirect.com/science/article/abs/pii/S0254058422007568?via%3Dihub
Journal of Electronic Materials
L.K. Narangammana, Y.M.D.C.Y., Bandara, L.A. DeSilva,
T.M.W.J. Bandara, (2022). Organic-Inorganic Hybrid Thermocouple Intended
for Thermoelectric Generators Using Low-Cost Nontoxic Materials. Journal of Electronic Materials, .
DOI: https://link.springer.com/article/10.1007/s11664-022-09799-x
Journal of Solid State Electrochemistry
G.B.M.M.M., Nishshanke, B.D.K.K. Thilakarathna,
I. Albinsson, B-E. Mellander, and T.M.W.J.
Bandara. (2021). Multi-layers of TiO2 nanoparticles in
the photoelectrode and binary iodides in the gel polymer electrolyte based on
poly (ethylene oxide) to improve quasi solid-state dye-sensitized solar cells. Journal of Solid State Electrochemistry, 25 (2): 707-720.
DOI: https://link.springer.com/article/10.1007/s10008-020-04846-1
MRS Advances
T.M.W.J. Bandara, A.A.A.P.
Aththanayake, G.R.A. Kumara, P. Samarasekara, L. Ajith DeSilva, and K.
Tennakone (2021). Transparent and conductive F-Doped SnO2
nanostructured thin films by sequential nebulizer spray pyrolysis. MRS Advances, 6: 417–421.
DOI: https://link.springer.com/article/10.1557/s43580-021-00017-0?noAccess=true
IRE Journals,
R.M.T.D. Rajapaksha, P. Samarasekara, P.G.D.C.K., Karunarathna, T.M.W.J. Bandara C.A.N. Fernando (2021). Enhancement of gas sensitivity of ferric oxide thin films by adding activated
carbon nanoparticles. IRE Journals,, 4 (10): 107-113..
chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.researchgate.net/profile/Pubudu-Sama
Ceylon Journal of Science
H.U. Kumarasinghe, L.R.A.K. Bandara, T.M.W.J. Bandara, G.K.R. Senadeera, C.A. Thotawatthage, (2021). Fabrication of β-phase poly (vinylidene fluoride)
piezoelectric film by electrospinning for nanogenerator preparations. Ceylon Journal of Science, 50(5): 357–363.
DOI: https://cjs.sljol.info/articles/abstract/10.4038/cjs.v50i5.7925/
Journal of Materials Science: Materials in Electronics
T.M.W.J Bandara, H.M.N. Wickramasinghe, K. Wijayaratne, L. Ajith DeSilva, and A.A.I.
Perera (2021). Quasi-solid-state dye-sensitized solar cells
utilizing TiO2/graphite composite counter electrode and TiO2/N719
sensitizer photoelectrode for low-cost power generation. . Journal of Materials Science: Materials in Electronics, 32(22): 26758-26769.
DOI: https://link.springer.com/article/10.1007/s10854-021-07053-4
Nanoscale Advances
T.M. Wijendra Jayalath Bandara, Maurizio Furlani, Ingvar Albinsson, Angela Wulff, Bengt-Erik Mellander (2020). Diatom frustules enhancing efficiency in gel polymer electrolyte based dye-sensitized solar cells with multilayer photoelectrodes. Nanoscale Advances, 2: 199-209.
https://pubs.rsc.org/en/content/articlehtml/2020/na/c9na00679f
Polymer Electrolytes: Characterization Techniques and Energy Applications
T.M.W.J. Bandara, J.L. Ratnasekera
(2020). Polymer Electrolytes for Quantum Dot‐Sensitized Solar Cells (QDSSCs) and Challenges. Polymer Electrolytes: Characterization Techniques and Energy Applications, : 299-337.
DOI: https://onlinelibrary.wiley.com/doi/abs/10.1002/9783527805457.ch10
Ionics
G.B.M.M.M. Nishshanke, A.K. Arof, T.M.W.J. Bandara (2020). Review on mixed cation effect in gel polymer electrolytes for
quasi solid-state dye-sensitized solar cells
. Ionics, 26: 3685–3704.
DOI: https://link.springer.com/article/10.1007/s11581-020-03668-5
Physical Chemistry Chemical Physics
T.M.W.J. Bandara, S.L.N.
Senavirathna, H.M.N. Wickramasinghe, K. Vignarooban, L.A. De Silva, M.A.K.L.
Dissanayake, I. Albinsson, B.-E. Mellander, (2020). Binary counter ion effects and dielectric
behavior of iodide ion conducting gel-polymer electrolytes for high-efficiency quasi-solid-state solar cells. Physical Chemistry Chemical Physics, 22: 12532 -12543.
https://pubs.rsc.org/en/content/articlelanding/2020/cp/d0cp01547d/unauth
Journal of Solid State Electrochemistry
T.M.W.J. Bandara, L. Ajith DeSilva, L.B.E. Gunasekara, Sunil Dehipawala, B.-E. Mellander (2020). Determination of charge carrier transport
parameters in a polymer electrolyte intended for Li-ion batteries using electrochemical
impedance analysis. Journal of Solid State Electrochemistry, 24: 1207–1216..
DOI: https://link.springer.com/article/10.1007%2Fs10008-020-04604-3
Optical Materials
Zachary Welchel, L. Ajith DeSilva, T.M.W.J. Bandara, (2020). Properties of tris (8-hydroxyquinoline) aluminum
thin films fabricated by spin coating from static and dynamic dispense methods, . Optical Materials, 108: 110447..
https://www.sciencedirect.com/science/article/abs/pii/S0925346720307886
Journal of Materials Science: Materials in Electronics
T. M. W. J. Bandara, C. S. Knee, M. Furlani, I. Albinsson, and B-E.
Mellander. (2019). Novel photo-voltaic device based on Bi 1− x La x FeO 3 perovskite films with higher efficiency. Journal of Materials Science: Materials in Electronics, 30, no. 2: 1654-1662..
DOI: https://link.springer.com/article/10.1007/s10854-018-0436-8
Renewable and Sustainable Energy Reviews
T. M. W. J. Bandara, L. Ajith DeSilva, J. L. Ratnasekera, K. H.
Hettiarachchi, A. P. Wijerathna, Madhavi Thakurdesai, Joshua Preston, I. Albinsson,
and B-E. Mellander. (2019). High efficiency dye-sensitized solar cell based on a novel gel polymer
electrolyte containing RbI and tetrahexylammonium iodide (Hex4NI)
salts and multi-layered photoelectrodes of TiO2 nanoparticles. . Renewable and Sustainable Energy Reviews, 103: 282-290.
https://www.sciencedirect.com/science/article/pii/S1364032118308542
MRS Advances
T.M.W.J. Bandara, L. Ajith Desilva,
K. Vignarooban, S.L.N. Senavirathna, R. Luminda Kulasiri, (2019). The Voltammetric Hysteresis Behavior and
Potential Scan Rate Dependence of a Dye Sensitized Solar Cells. MRS Advances, 4 (15): 865-871.
https://www.cambridge.org/core/journals/mrs-advances/article/voltammetric-hysteresis-behavior-and-po
MRS Advances
L. Ajith Desilva, Sarahn Nazaret, A. G. U. Perera, T.M.W.J. Bandara, (2019). Optical Properties of Alq3/TiO2
BDR Structure Processed by Spin Coating Technique. MRS Advances, 4 (11-12): 661-666.
https://www.cambridge.org/core/journals/mrs-advances/article/optical-properties-of-alq3tio2-bdr-stru
Modern Approaches on Material Science
T.M.W.J. Bandara , G.B.M.M.M. Nishshanke and D. Thilakarathna (2019). Binary Iodides and Polyethylene Oxide (PEO) Based Gell Polymer Electrolyte for Dye Sensitized Solar Cells. Modern Approaches on Material Science, 2: 1.
https://lupinepublishers.com/material-science-journal/fulltext/binary-iodides-and-polyethylene-oxide
Applied Physics
DeSilva, L. Ajith, Madhavi Thakurdesai, T.M.W.J. Bandara, Joshua Preston, Wyatt Johnson, Anne Gaquere-Parker, Smita Survase (2018). Synthesis of dense TiO2 nanoparticle multilayers using spin coating technique. Applied Physics, A124- 4: 314.
Optik
DeSilva, L. Ajith, Raghuveer Gadipalli, Anthony Donato, and T.M.W.J. Bandara (2018). Reflectivity of 88% for four-period hybrid Bragg mirror from spin coating process. Optik, 157: 360-364.
Electrochimica Acta
T.M.W.J. Bandara, A.M.J.S. Weerasinghe, M.A.K.L. Dissanayake, G.K.R. Senadeera, M. Furlani, I. Albinsson, B-E. Mellander (2018). Characterization of poly (vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) nanofiber membrane based quasi solid electrolytes and their application in a dye sensitized solar cell. Electrochimica Acta, 266: 276-283.
Physical Chemistry Chemical Physics
O. Bettucci, V.S. Becerril, T.M.W.J. Bandara, M. Furlani, M. Abrahamsson, B.E. Mellander, L. Zani (2018). Organic dye-sensitized solar cells containing alkaline iodide-based gel polymer electrolytes: influence of cation size. Physical Chemistry Chemical Physics, 20(2),: 1276-1285..
Electrochimica Acta
A.K. Arof, I.M. Noor, M.H. Buraidah, T.M.W.J. Bandara, M.A. Careem, I. Albinsson, and B-E. Mellander (2017). Polyacrylonitrile gel polymer electrolyte based dye sensitized solar cells for a prototype solar panel. Electrochimica Acta, 251: 223-234.
Electrochimica Acta
T.M.W.J. Bandara, H.D.N.S. Fernando, M. Furlani, I. Albinsson, J.L. Ratnasekera, L.Ajith DeSilva, M.A.K.L. Dissanayake, B.-E. Mellander (2017). Combined Effect of Alkaline Cations and Organic Additives for Iodide Ion Conducting Gel Polymer Electrolytes to Enhance Efficiency in Dye Sensitized Solar Cells. Electrochimica Acta, 252: 208-214 .
Optical Materials Express
S. Shah, I.M. Noor, J. Pitawala, I. Albinson, T.M.W.J. Bandara, B.-E. Mellander, A.K. Arof (2017). Plasmonic effects of quantum size metal nanoparticles on dye-sensitized solar cell. Optical Materials Express, 7(6): 2069-2083.
Ionics
T.M.W.J. Bandara, D.G.N. Karunanayake, J.L. Ratnasekara, L.A.A. De Silva, B.-E. Mellander (2017). Electrical and Complex Dielectric Behavior of Composite Polymer Electrolyte based on PEO, Alumina and Tetrapropylammonium Iodide. Ionics, 23: 1711-1719 .
Journal of Materials Science: Materials in Electronics
L. Ajith DeSilva, P.K.D.D.P. Pitigala, A. Gaquere-Parker, Ryan Landry, J. E. Hasbun, Victoria Martin, T.M.W.J. Bandara, and A. G. U. Perera (2017). Broad absorption natural dye (Mondo-Grass berry) for dye sensitized solar cell. Journal of Materials Science: Materials in Electronics, 28(11): 7724-7729 .
J. Solid State Electrochemistry
T.M.W.J. Bandara, H.D.N.S, Fernando, M. Furlani, I. Albinsson, M.A.K., Dissanayake, L.J. Ratnasekera, B.-E. Mellander (2017). Dependence of solar cell performance on the nature of alkaline counter-ion in gel polymer electrolytes containing binary iodides. J. Solid State Electrochemistry, 21(6): 1571-1578 .
Ceylon Journal of Science
T.M.W.J. Bandara, H.D.N.S. Fernando, E.J. Rupasinghe, J.L. Ratnasekera, P.H.N.J., Chandrasena, M.Furlani, I. Albinsson, M.A.K.L. Dissanayake, B.E. Mellander (2016). N719 and N3 dyes for quasi-solid state dye sensitized solar cells-A comparative study using polyacrylonitrile and CsI based electrolytes. Ceylon Journal of Science, 45(2).
Ionics
M.A.K.L. Dissanayake, G.K.R. Senadeera, T.M.W.J. Bandara (2016). Mixed cation effect and iodide ion conductivity in electrolytes for dye sensitized solar cells. Ionics, : 1-7.
DOI: https://dx.doi.org/10.1007/s11581-016-1902-z
RSC Advances
T.M.W.J. Bandara, H.D.N.S. Fernando, M. Furlani, I. Albinsson, M.A.K.L. Dissanayake, B.-E Mellander (2016). Performance enhancers for gel polymer electrolytes based on LiI and RbI for quasi-solid-state dye sensitized solar cells. RSC Advances, 6 (105): 103683-103691 .
Phys. Chem. Chem. Phys.
T.M.W.J. Bandara, H.D.N.S. Fernando, M. Furlani,c I. Albinsson, M.A.K.L. Dissanayake, J.L. Ratnasekera and B.-E. Mellander (2016). Effect of the alkaline cation size on the conductivity in gel polymer electrolytes and their influence on photo electrochemical solar cells. Phys. Chem. Chem. Phys., 18: 10873 .
J. Appl. Electrochem.
T.M.W.J. Bandara, W.J.M.J.S.R. Jayasundara, H.D.N.S. Fernando, M.A.K.L. Dissanayake, L.A.A. De Silva, M. Furlani, I. Albinsson and B.-E. Mellander (2015). Efficiency of 10 % for quasi-solid state dye-sensitized solar cells under low light irradiance. J. Appl. Electrochem., 45: 289-298 .
J. Solid State Electrochem.
T.M.W.J. Bandara, M.F. Aziz, H.D.N.S. Fernando, M.A. Careem, A.K. Arof, B.-E. Mellander (2015). Efficiency enhancement in dye-sensitized solar cells with a novel PAN-based gel polymer electrolyte with ternary iodides. J. Solid State Electrochem., 19 (8),: 2353-2359 .
International J. Hydrogen Energy
T.M.W.J. Bandara, W.J.M.J.S.R. Jayasundara, H.D.N.S. Fernando, M.A.K.L. Dissanayake, M. Furlani, I. Albinsson and B.-E. Mellander (2014). Quasi solid state polymer electrolyte with binary iodide salts for photo-electrochemical solar cells. International J. Hydrogen Energy, 39: 2997-3004.
J. Appl. Electrochem
T.M.W.J. Bandara, W.J.M.J.S.R. Jayasundara, H.D.N.S. Fernado, M.A.K.L. Dissanayake, L.A.A. De Silva, P.S.L. Fernando, B-E Mellander (2014). Efficiency enhancement of dye-sensitized solar cells with PAN:CsI:LiI quasi-solid state (gel) electrolytes. J. Appl. Electrochem, 44: 917-926.
Journal of Chemistry
S.N.F. Yusuf, M.F. Aziz, H.C. Hassan, T.M.W.J. Bandara, B.-E. Mellander, M.A. Careem, A.K. Arof (2014). Phthaloylchitosan-Based Gel Polymer Electrolytes for Efficient Dye-Sensitized Solar Cells. Journal of Chemistry, : 1-8.
DOI: https://dx.doi.org/10.1155/2014/783023
J. Rheol. Acta.
N.Tz. Dinteheva, M. Furlani, W.J.M.J.S.R. Jayasundara, T.M.W.J. Bandara, B-E. Mellander, F.P. La Mantia (2013). Rheological behavior of PAN based electrolytic gel containing tetrahexylammonium and magnesium iodide for photoelectrochemical applications. J. Rheol. Acta., 52: 881-889 .
J. Electrical Engineering
W.J.M.J.S.R. Jayasundara, T.M.W. J. Bandara, P.S.L. Fernando, H.D.N.S. Fernado, M.A.K.L. Dissanayake, L.R.A.K. Bandara and B-E Mellander (2013). Conductivity and Thermal Properties of PAN Based Polymer Electrolytes for Possible Application in Photo Electrochemical Solar Cells. J. Electrical Engineering, 1: 34-39 .
J. Natn. Sci. Foundation Sri Lanka (JNSF)
T.M.W.J. Bandara, T. Svensson, M.A.K.L. Dissanayake, M. Furlani, W.J.M.J.S.R. Jayasundara, P.S.L. Fernando, I. Albinsson B-E. Mellander (2013). Conductivity behavior in novel quasi-solid-sate electrolyte based on polyacrylonitrile and tetrahexylammonium iodide intended for dye sensitized solar cells. J. Natn. Sci. Foundation Sri Lanka (JNSF), 41 (3): 175-184 .
Electrochemistry, J. Appl. Electrochem.
M.A.K.L. Dissanayake, C.A. Thotawatthage, G.K.R. Senadeera, T.M.W.J. Bandara, W.J.M.J.S.R. Jayasundara, B.-E. Mellander (2013). Efficiency enhancement in dye sensitized solar cells based on PAN gel electrolyte with Pr4NI + MgI2 binary iodide salt mixture. Electrochemistry, J. Appl. Electrochem., 43: 891-901 .
Electrochimica Acta
T.M.W.J. Bandara, W.J.M.J.S.R. Jayasundara, M.A.K.L. Dissanayake, M.Furlani, I. Albinsson, B. -E. Mellander (2013). Effect of cation size on the performance of dye sensitized nanocrystalline TiO2 solar cells based on quasi-solid state PAN electrolytes containing quaternary ammonium iodides. Electrochimica Acta, 109: 609-616 .
J. Solid State Electrochem.
M.A.K.L. Dissanayake, W.N.S. Rupasinghe, J.M.N.I. Jayasundara, P. Ekanayake, T.M.W.J. Bandara, S.N. Thalawala, V.A. Seneviratne (2013). Ionic conductivity enhancement in the solid polymer electrolyte PEO9LiTf by nanosilica filler from rice husk ash. J. Solid State Electrochem., 17: 1775-1783 .
Physical Chemistry Chemical Physics
Bandara, T. M. W. J., Dissanayake, M. A. K. L., Jayasundara, W. J. M. J. S. R., Albinsson, I., & Mellander, B. E. (2012). Efficiency enhancement in dye sensitized solar cells using gel polymer electrolytes based on a tetrahexylammonium iodide and MgI 2 binary iodide system. Physical Chemistry Chemical Physics, 14(24): 8620-8627.
J. Photochemistry and Photobiology A: Chemistry
M.A.K.L. Dissanayake, C.A. Thotawatthage, G.K.R. Senadeera, T.M.W.J. Bandara, W.J.M.J.S.R. Jayasundara, B.-E. Mellander (2012). Efficiency enhancement by mixed cation effect in dye-sensitized solar cells with PAN based gel polymer electrolyte. J. Photochemistry and Photobiology A: Chemistry, 246: 29- 35 .
Energy Procedia
T.M.W.J. Bandara, T. Svensson, M.A.K.L. Dissanayake, M. Furlani, W.J.M.J.S.R. Jayasundara, B.-E. Mellander (2012). Tetrahexylammonium Iodide Containing Solid and Gel Polymer Electrolytes for Dye Sensitized Solar Cells. Energy Procedia, 14: 1607-1612 .
Solid State Ionics
T.M.W.J. Bandara M.A.K.L. Dissanayake, I. Albinsson, B.-E. Mellander (2011). Mobile charge carrier concentration and mobility of a polymer electrolyte containing PEO and Pr4N+I− using electrical and dielectric measurements. Solid State Ionics, 189: 63-68 .
J. Power Sources
T.M.W.J. Bandara, M.A.K.L. Dissanayake, I. Albinsson, B.-E. Mellander (2010). Dye-sensitized, nano-porous TiO2 solar cell with poly(acrylonitrile): MgI2 plasticized electrolyte. J. Power Sources, 195,11: 3730-3734.
Electrochimica Acta
T.M.W.J. Bandara, M.A.K.L. Dissanayake, I. Albinsson, B.-E. Mellander (2010). Dye sensitized solar cells with poly(acrylonitrile) based plasticized electrolyte containing MgI2. Electrochimica Acta, 55,6: 2044-2047 .
J. Solid State Electrochemistry
T.M.W.J. Bandara, P. Ekanayake, M.A.K.L. Dissanayake, I. Albinsson, B.-E. Mellander (2010). A polymer electrolyte containing ionic liquid for possible applications in photoelectrochemical solar cells. J. Solid State Electrochemistry, 14: 1221-1226 .
J. Solid State Electrochemistry
T.M.W.J. Bandara, B.-E. Mellander, I. Albinsson, M.A.K.L. Dissanayake, H.M.J.C. Pitawala (2009). Thermal and dielectric properties of PEO/EC/Pr4N+I− polymer electrolytes for possible applications in photo-electro chemical solar cells. J. Solid State Electrochemistry, 13, 8: 1227-1232 .
Rev. LatinAm. Metal. Mater.
M.E. Fernández, J.E. Diosa, W.O. Bucheli, R.A. Vargas, T.M.W.J. Bandara, B.-E.Mellander (2009). Thermoelectric Studies of the Polymer Electrolyte Poly(Vinyl Alcohol) - AgI -H2O. Rev. LatinAm. Metal. Mater., S1 (3): 1251-1253 .
Solid State Ionics
T.M.W.J. Bandara, B.-E. Mellander, I. Albinsson, M.A.K.L. Dissanayake (2009). Effect of thermal history and characterization of plasticized, composite polymer electrolyte based on PEO and tetrapropylammonium iodide salt (Pr4N+I-). Solid State Ionics, 180, 4-5: 362-367 .
J. Solid State Electrochemistry
T.M.W.J. Bandara, M.A.K.L. Dissanayake, O.A. Ileperuma, K.Varaprathan, K. Vignarooban, B.-E. Mellander (2008). Polyethyleneoxide (PEO)-based, anion conducting solid polymer electrolyte for PEC solar cells. J. Solid State Electrochemistry, 12: 913-917 .
Solar energy materials and solar cells
Fernando, C. A. N., Bandara, T. M. W. J., & Wethasingha, S. K. (2001). H2 evolution from a photoelectrochemical cell with n-Cu2O photoelectrode under visible light irradiation. Solar energy materials and solar cells, 70(2): 121-129.